\(\int \frac {(d+e x)^{3/2} (f+g x)}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [667]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 44, antiderivative size = 150 \[ \int \frac {(d+e x)^{3/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 (c d f-a e g) (d+e x)^{3/2}}{c d \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {2 \left (2 a e^2 g-c d (e f+d g)\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt {d+e x}} \]

[Out]

-2*(-a*e*g+c*d*f)*(e*x+d)^(3/2)/c/d/(-a*e^2+c*d^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-2*(2*a*e^2*g-c*d*(d
*g+e*f))*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2/(-a*e^2+c*d^2)/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {802, 662} \[ \int \frac {(d+e x)^{3/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (2 a e^2 g-c d (d g+e f)\right )}{c^2 d^2 \sqrt {d+e x} \left (c d^2-a e^2\right )}-\frac {2 (d+e x)^{3/2} (c d f-a e g)}{c d \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[In]

Int[((d + e*x)^(3/2)*(f + g*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*(c*d*f - a*e*g)*(d + e*x)^(3/2))/(c*d*(c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (2*(2
*a*e^2*g - c*d*(e*f + d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c^2*d^2*(c*d^2 - a*e^2)*Sqrt[d + e*x
])

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 802

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(c*d - b*e) + c*e*f)*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(p + 1)*(2*c*d - b*e))), x] - Dist[e*((m*(g
*(c*d - b*e) + c*e*f) + e*(p + 1)*(2*c*f - b*g))/(c*(p + 1)*(2*c*d - b*e))), Int[(d + e*x)^(m - 1)*(a + b*x +
c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2,
 0] && LtQ[p, -1] && GtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (c d f-a e g) (d+e x)^{3/2}}{c d \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\left (2 \left (-\frac {1}{2} e \left (2 c d e f-\left (c d^2+a e^2\right ) g\right )+\frac {3}{2} \left (c d e^2 f+\left (c d^2 e-e \left (c d^2+a e^2\right )\right ) g\right )\right )\right ) \int \frac {\sqrt {d+e x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d \left (2 c d^2 e-e \left (c d^2+a e^2\right )\right )} \\ & = -\frac {2 (c d f-a e g) (d+e x)^{3/2}}{c d \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {2 \left (2 a e^2 g-c d (e f+d g)\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt {d+e x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.34 \[ \int \frac {(d+e x)^{3/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2 \sqrt {d+e x} (2 a e g+c d (-f+g x))}{c^2 d^2 \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[((d + e*x)^(3/2)*(f + g*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(2*Sqrt[d + e*x]*(2*a*e*g + c*d*(-f + g*x)))/(c^2*d^2*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 0.53 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.39

method result size
default \(\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (c d g x +2 a e g -c d f \right )}{\sqrt {e x +d}\, \left (c d x +a e \right ) c^{2} d^{2}}\) \(58\)
gosper \(\frac {2 \left (c d x +a e \right ) \left (c d g x +2 a e g -c d f \right ) \left (e x +d \right )^{\frac {3}{2}}}{c^{2} d^{2} \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}\) \(66\)

[In]

int((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/(e*x+d)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)*(c*d*g*x+2*a*e*g-c*d*f)/(c*d*x+a*e)/c^2/d^2

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.64 \[ \int \frac {(d+e x)^{3/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d g x - c d f + 2 \, a e g\right )} \sqrt {e x + d}}{c^{3} d^{3} e x^{2} + a c^{2} d^{3} e + {\left (c^{3} d^{4} + a c^{2} d^{2} e^{2}\right )} x} \]

[In]

integrate((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*g*x - c*d*f + 2*a*e*g)*sqrt(e*x + d)/(c^3*d^3*e*x^2 + a*c^2
*d^3*e + (c^3*d^4 + a*c^2*d^2*e^2)*x)

Sympy [F]

\[ \int \frac {(d+e x)^{3/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {\left (d + e x\right )^{\frac {3}{2}} \left (f + g x\right )}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((e*x+d)**(3/2)*(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral((d + e*x)**(3/2)*(f + g*x)/((d + e*x)*(a*e + c*d*x))**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.32 \[ \int \frac {(d+e x)^{3/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \, f}{\sqrt {c d x + a e} c d} + \frac {2 \, {\left (c d x + 2 \, a e\right )} g}{\sqrt {c d x + a e} c^{2} d^{2}} \]

[In]

integrate((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

-2*f/(sqrt(c*d*x + a*e)*c*d) + 2*(c*d*x + 2*a*e)*g/(sqrt(c*d*x + a*e)*c^2*d^2)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.92 \[ \int \frac {(d+e x)^{3/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{c^{2} d^{2} {\left | e \right |}} - \frac {2 \, {\left (c d e^{2} f - a e^{3} g\right )}}{\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c^{2} d^{2} {\left | e \right |}} + \frac {2 \, {\left (c d e^{2} f + c d^{2} e g - 2 \, a e^{3} g\right )}}{\sqrt {-c d^{2} e + a e^{3}} c^{2} d^{2} {\left | e \right |}} \]

[In]

integrate((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

2*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(c^2*d^2*abs(e)) - 2*(c*d*e^2*f - a*e^3*g)/(sqrt((e*x + d)*c*d*e -
 c*d^2*e + a*e^3)*c^2*d^2*abs(e)) + 2*(c*d*e^2*f + c*d^2*e*g - 2*a*e^3*g)/(sqrt(-c*d^2*e + a*e^3)*c^2*d^2*abs(
e))

Mupad [B] (verification not implemented)

Time = 12.39 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.79 \[ \int \frac {(d+e x)^{3/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {\left (\frac {\left (4\,a\,e\,g-2\,c\,d\,f\right )\,\sqrt {d+e\,x}}{c^3\,d^3\,e}+\frac {2\,g\,x\,\sqrt {d+e\,x}}{c^2\,d^2\,e}\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\frac {a}{c}+x^2+\frac {x\,\left (c^3\,d^4+a\,c^2\,d^2\,e^2\right )}{c^3\,d^3\,e}} \]

[In]

int(((f + g*x)*(d + e*x)^(3/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2),x)

[Out]

((((4*a*e*g - 2*c*d*f)*(d + e*x)^(1/2))/(c^3*d^3*e) + (2*g*x*(d + e*x)^(1/2))/(c^2*d^2*e))*(x*(a*e^2 + c*d^2)
+ a*d*e + c*d*e*x^2)^(1/2))/(a/c + x^2 + (x*(c^3*d^4 + a*c^2*d^2*e^2))/(c^3*d^3*e))